Robust Second Order Accurate Inference for Generalized Linear Models
نویسندگان
چکیده
Generalized linear models have become the most commonly used class of regression models in the analysis of a large variety of data. In particular, generalized linear model can be used to model the relationship between predictors and a function of the mean of a continuous or discrete response variable. The estimation of the parameters of the model can be carried out by maximum likelihood or quasi-likelihood methods, which are equivalent if the link is canonical. Standard asymptotic inference based on likelihood ratio, Wald and score test is then readily available for these models. However, two main problems can potentially invalidate p-values and confidence intervals based on standard classical techniques. First of all, the models are ideal approximations to reality and deviations from the assumed distribution can have important effects on classical estimators and tests for these models (nonrobustness). Secondly, even when the model is exact, standard classical inference is based on (first order) asymptotic theory. This can lead to inaccurate p-values and confidence intervals when the sample size is moderate to small or when probabilities in the extreme tails are required. The nonrobustness of classical estimators and tests for the parameters is a well known problem and alternative methods have been proposed in the literature. These methods are robust and can cope with deviations from the assumed distribution. However, they are based on first order asymptotic theory and their accuracy in moderate to small samples is still an open question. In this paper we propose a test statistic which combines robustness and good accuracy for small sample sizes. We combine results from Cantoni and Ronchetti (2001) and Robinson, Ronchetti and Young (2003) to obtain a new test statistic for hypothesis testing and variable selection which is asymptotically χ distributed as the three classical tests but with a relative error of order O(n−1). Moreover, the accuracy of the new test statistic is stable in a neighborhood of the model distribution and this leads to robust inference even in moderate to small samples. Joint work with S. N. Lo.
منابع مشابه
Robust and accurate inference for generalized linear models
Abstract In the framework of generalized linear models, the nonrobustness of classical estimators and tests for the parameters is a well known problem and alternative methods have been proposed in the literature. These methods are robust and can cope with deviations from the assumed distribution. However, they are based on first order asymptotic theory and their accuracy in moderate to small sa...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملRobust Inference Based on Quasi- likelihoods for Generalized Linear Models and Longitudinal Data
In this paper we introduce and develop robust versions of quasilikelihood functions for model selection via an analysis-of-deviance type of procedure in generalized linear models and longitudinal data analysis. These robust functions are built upon natural classes of robust estimators and can be seen as weighted versions of their classical counterparts. The asymptotic theory of these test stati...
متن کاملPackage ‘ AICcmodavg ’ September 12 , 2013
Description This package includes functions to create model selection tables based on Akaike’s information criterion (AIC) and the second-order AIC (AICc), as well as their quasi-likelihood counterparts (QAIC, QAICc). Tables are printed with delta AIC and Akaike weights. The package also features functions to conduct classic model averaging (multimodel inference) for a given parameter of intere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005